Давление, необходимое для создания потока жидкости, должно быть, подобрано в требуемом значении и должно компенсировать потери в системе. Существует два типа потерь: статический напор и потери напора на трении.
Статический напор — это разница высот между всасывающим и напорными резервуарами, как показано на
рис. 1. Он не зависит от значения расхода, как показано графически на
рис. 2.
Потери напора на трении (иногда называемые потери динамического напора) возникают во время прохождения перекачиваемой жидкостью труб, клапанов и другого оборудования системы. Данные потери пропорциональны площади пройденной потоком.
Замкнутый контур циркуляционной системы, недоступный воздействию атмосферного давления, имеет только гидравлические потери напора системы на трение, находящиеся в обратной зависимости к значению расхода, как показано на
рис. 3.
2. График кривой гидравлической характеристики
Большинство систем имеют одновременно статический напор и потери напора на трении, а большинство случаев, отражено на двух кривых
рис. 4 и
5. Значение отношения статического напора к потерям напора на трении, по всему рабочему диапазону, влияет на эффективность, которая должна достигаться при работе двигателей с частотным регулированием.
Статический напор — это особенность индивидуальной системы, уменьшающая данный напор, там где это возможно, обычно это экономит затраты на установку и эксплуатацию насоса. Потери напора на трении должны быть снижены с целью снижения средств на эксплуатацию насоса, но после исключения ненужной трубопроводной арматуры и участка трубы, дальнейшее снижение потерь на напоре будет требовать больший диаметр труб, которые повысят затраты на монтаж.
3. Гидравлическая кривая насоса
Характеристики насоса могут быть также выражены графически, как отношение напора к расходу. Смотрите
рис. 6 для центробежных насосов и
рис. 7 для поршневых.
Центробежные насосы имеют гидравлическую кривую характеристик, где с увеличением расхода, напор постепенно падает, но для поршневых насосов, какое бы ни было значение напора, расход практически постоянен.
4. Рабочая точка насоса
Когда насос устанавливается в системе, то их взаимодействие может быть изображено графически наложением насоса и гидравлической кривой системы. (
рис. 8 и
рис. 9).
Если фактическая гидравлическая кривая системы отличается от расчетной, то насос будет работать в точке с напором и расходом, отличном от ожидаемого.
У поршневых насосов, если гидравлическое сопротивление системы растет, то насос увеличит давление нагнетания и будет сохранять практически постоянный расход, зависящий от вязкости жидкости и типа насоса. Без использования защитной трубопроводной арматуры значение давления может достичь критической отметки.
Для центробежных насосов увеличение гидравлического сопротивления системы сведет расход в конечном итоге до значения «0», но максимальное значение напора, как показано на
рис. 8 ограничивается. Кроме того, при таких условиях возможен непродолжительный период работы насоса.
Ошибка расчета кривой гидравлической системы вероятнее всего может также привести к выбору центробежного насоса не отвечающего оптимальным характеристикам.
При подборе насоса большего типоразмера, который будет работать в большем значении расхода или даже в условиях дроссельной системы, дополнительный запас мощности увеличит потребление энергии и сократит срок службы насоса.