Автор Е.Н. Пирогов, к.т.н., ООО «НПФ ВИЭТО» Надежность и эффективность работы холодильного оборудования определяется не только оптимальным температурным режимом его использования, но и условиями его эксплуатации, а именно высоким качеством подводимых энергоресурсов. Применение в качестве тепло и хладоносителя воды обусловлено ее высокими теплофизическими свойствами, доступностью и низкой стоимостью. В то же время примеси, содержащиеся в воде, могут привести к коррозии трубопроводов и теплообменного оборудования, входящих в состав холодильных систем.
Основные требования к охлаждающей воде [1]: достаточно низкая температура, малая карбонатная жесткость, предельно малые концентрации ионов железа и сероводорода. Ограничения, связанные устранимой жесткостью, вызваны возможным переходом гадрокарбонатов кальция и магния при нагревании в карбонаты, отлагающиеся на стенках теплообменной аппаратуры. Соединения железа, сероводород усиливают коррозию железа воде и вызывают образование обрастаний на внутренних поверхностях труб. Поэтому соединения железа в охлаждающей воде не должны превышать 0,1 мг/л, а сероводорода — 0,5 мг/л. Карбонатная жесткость допускается до 2,8 мг . экв/л. Обычно качество воды, используемой для охлаждения, при котором не происходит в холодильных аппаратах зарастания живого сечения и не возникает коррозии, должно определяться для конкретных условий специальным расчетом с учетом всех вышеприведенных факторов. Используемая в системе охлаждения вода может поступать из поверхностных водоемов или из подземных источников. Качество воды, а также состав загрязнений из этих источников могут существенно разниться. Этот факт требует применения для кондиционирования охлаждающей воды универсальных методов очистки. Универсальностью очистки обладает метод озоно-сорбционной очистки. Основным преимуществом такого технического решения является безреагентность (не требуется использование реагентов в процессе работы) и универсальность метода очистки. Озон является наиболее сильным окислителем и генерируется из воздуха. В одной технологической стадии кроме железа в форме Fe 2+ и марганца в форме Mn 2+ происходит окисление сероводорода, органики и обеззараживание, т.е. удаление микроорганизмов, содержащихся в исходной воде. Конструктивно данный метод оформлен в комплексе озоно-сорбционной очистки, принципиальная схема которого приведена на рис. 1 . В состав комплекса озоно-сорбционной очистки входят озонатор барьерного разряда, система управления работой комплекса, эжектор для подачи озона и смешения его с исходной водой, контактно-фильтровальный аппарат (КФА) с двухслойной засыпкой (гравий и активированный уголь) и размещенными в нем датчиками, деструктор озона, насосная станция, трубопроводы обвязки и запорная арматура. Технологическое оборудование может быть выполнено в виде мобильного или стационарного модулей. В мобильном исполнении все оборудование размещается на раме и может транспортироваться в зависимости от выполняемой задачи. Работа комплекса производится в автоматическом или полуавтоматическом (регенерация засыпки производится вручную) режимах. При включении контроллера и озонатора (включение производится поворотом соответствующих выключателей) открывается электромагнитный клапан и исходная вода подается через эжектор в контактный резервуар. Одновременно в озонаторе вырабатывается озоно-воздушная смесь, которая поступает в эжектор за счет разрежения и смешивается с исходной водой. Растворившийся озон реагирует с примесями, содержащимися в воде (происходит окисление соединений марганца, железа в форме Fe 2+ и перевод его в форму Fe 3+ , а также окисление сероводорода и органических соединений. Одновременно происходит обеззараживание воды). Логика управления процессом озонирования поясняется принципиальной схемой представленной на рис. 2 . Управление работой электромагнитного клапана, озонатора, насосной станции обеспечивается автоматически по сигналу от блока датчиков уровня. Электромагнитный клапан открывается при достижении водой уровня У2 и закрывается при достижении уровня У1 . Одновременно с открытием электромагнитного клапана включается озонатор. Отключение озонатора происходит при закрытии электромагнитного клапана. Насосная станция управляется реле давления при наличии напряжения питания, которое включается, когда вода в контактной емкости поднимется до уровня У3 и выключается, когда уровень воды опускается до уровня У4 . Продукты окисления задерживаются засыпкой активированного угля, размещенного в контактном резервуаре. По мере накопления осадка активированный уголь требует регенерации (взрыхление и промывка со сбросом в канализацию). Выбор параметров и режимов озоносорбционной очистки определяется согласно методическим рекомендациям [3]. Определяющим при выборе параметров установки является выполнение критерия: С . Т = const , где С — концентрация озона в воде, Т — время контакта озона с водой. Концентрация С определяется производительностью озонатора и концентрацией озона в озонооздушной смеси. Время контакта Т определяет размер контактно-фильтровального аппарата. Опыт эксплуатации комплекса подтверждает эффективность озоно-сорбционной технологии очистки, а разработанные установки обеспечивают хорошие органолептические показатели воды, очистку от соединений железа, марганца, органических веществ и микробиологического загрязнения. Успешная эксплуатация установок, низкие эксплуатационные затраты позволяют использовать их также для локальной очистки и водоснабжения малых жилых, производственных и социальных объектов. В процессе эксплуатации в системе водоснабжения могут образоваться механические примеси в виде песка, глины, которые негативно влияют на работу технологического оборудования. Для этих целей устанавливается промывной фильтр, в корпусе которого размещены фильтроэлементы Крапухина разработки института Физической химии РАН. Фильтр обеспечивает тонкость фильтрации от 7 до 300 мкм и не требует расходных материалов. Регенерация фильтроэлементов обеспечивается обратным потоком воды со сбросом ее в канализацию. Фильтр работает в циклическом режиме. После режима «фильтрование» следует режим «регенерация». Исключительным качеством фильтра является практически полное восстановление его характеристик после проведения режима «регенерация». Производительность фильтра определяется количеством ФЭК, размещенном в корпусе фильтра. Устройство фильтра представлено на рис. 3 . Качество воды, определяемое параметром «жесткость», решается двумя путями. Наиболее распространен химический метод ионного обмена катионов кальция и магния, содержащихся в воде, на катионы натрия, которые при нагревании не образуют осадков своих солей. При эксплуатации таких устройств образуется определенноe количество солевых стоков, требующих утилизации. В последнее время для целей защиты поверхностей нагрева от накипи широкое применение нашли электронные преобразователи жесткости «Термит» [4]. Это прибор настенного типа, состоящий из микропроцессорного блока и намотанных на трубопровод проволочных электродов. Вода при обработке не меняет химическую жесткость, однако изменяется структура солей жесткости с образованием карбоната кальция хрупкой аргонитной формы. При этом прочная смесь аморфных отложений солей жесткости не образуется, а сформировавшиеся ранее отложения разрушаются и уносятся потоком воды. Данный метод противонакипной обработки воды потребляет минимальное количество электроэнергии. Применение описанных в настоящей работе методов водоподготовки опробовано на большом количестве объектов, а самостоятельное или совместное применение этих устройств определяется качеством исходной воды и условиями конкретного объекта. Литература 1. Санитарные нормы СанПиН 2.1.4.559-96. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения.Контроль качества.— М., 1996. — 111 C. 2. Кульский Л.А., Строкач П.П. Технология очистки природных вод. — Киев, 1986. 3. Методические рекомендации по обеспечению требований санитарных правил и норм СанПиН 2.1.4.559-96 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества» на водопроводных станциях при очистке природных вод.— М., 2000. 4. В. Банников, Л. Гаврилов. Нетрадиционный метод устранения накипи и солевых наслоений // Наука и технология в промышленности. — 2002. — № 2.—с. 94-96 |